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ABSTRACT

Many digital image forensics techniques extracting various
fingerprints are dependent on data on digital images from
an unknown environment. As often software modifications
leave no appropriate traces in images metadata, critical in-
conveniences and miscalculations of fingerprints arise. This
is the problem addressed in this paper. Modeling information
noise in image metadata, we introduce a statistical approach
to metadata analysis of images from “unguaranteed” sources.
Resulting fingerprints are based on JPEG quantization tables.

Index Terms— Image forensics, image forgery detection,
hypergeometric distribution, jpeg quantization tables.

1. INTRODUCTION

One of the typical ways of determining the image integrity
is by matching the image being analyzed with its acquisition
device via device’s fingerprints. Very often the only possi-
ble source of the training set for extracting fingerprints are
popular photo sharing sites. When using images from such
sites, we face a real problem: uncertainty about the image’s
history. As these images could be processed and re–saved
by an editing software (for instance for contrast enhancing
or rotating) and by taking into account that many softwares
do not leave typical traces in metadata, we may face critical
inconveniences and miscalculations of fingerprints. This is
the problem addressed in this paper. Modeling information
noise in image metadata, we introduce a statistical approach
to metadata analysis of images from “unguaranteed” sources.

JPEG photographs contain various important metadata.
Among others, they are taken by (camera) users with cam-
eras, which encode them by means of quantization tables
(QTs). As different image acquisition devices and software
editors typically use different JPEG QTs, in this work, we use
QTs as devices fingerprints.
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2. RELATED WORK

There are a number of papers dealing with detection of arti-
facts brought into the JPEG image by the quantization proce-
dure and corresponding QTs. The artifacts were used to detect
the doubly/multiply compressed JPEG images. For example,
see [1, 2, 3, 4, 5, 6, 7].

Hany Farid [8, 9] using a database of one million im-
ages analyzed the potential of JPEG QTs to become a tool for
source identification. He found out that while the JPEG QTs
are not unique, they are effective at narrowing the source of
an image to a single camera make and model or to a small set
of possible cameras. His approach was based on equivalence
classes.

Jesse D. Kornblum [10] examined several thousand im-
ages from various types of image acquisition devices and soft-
wares. This allowed her to categorize the various types of QTs
and discuss the implications for image forensics.

3. BASIC NOTATIONS AND PRELIMINARIES

Suppose that any camera is identified as a pair of its make
mk and model mk (arbitrary the identification key can be
extended to other attributes as size, orientation, format, etc.).
Consider a database (DB) that stores above metadata of pho-
tographs observed on the Internet. This “observed” DB is
modeled as a ternary relation, denoted S, a subset of the
ternary Cartesian product Cm ×Qt × U of the set Cm of all
cameras, the set Qt of all QTs, and the set U of (all potential)
camera users. That is to say, a triplet 〈cm, qt , u〉 is in S iff qt
is the QT that has been observed to encode an image taken
by the (camera) user u with a camera cm .

Note that S represents noisy information. Indeed, some
(unknown amount of) tuples from S result from a software
manipulation with some photographs. We assume (Assump-
tion 1) that most software manipulations affect data concern-
ing QTs. Because of this, 〈cm, qt , u〉 ∈ S does not neces-
sarily entail that qt is the QT that has been employed by a
camera cm to encode an image taken by the (camera) user
u. In fact, qt might be the QT employed by a software appli-
cation to encoded the image that originally have been taken



with a camera cm , which, however, had encoded the image
by means of a QT different from qt . This is the noise inherent
in S.

To represent noise-free information, we introduce a vir-
tual, binary relation, denoted R, that is a subset of the binary
Cartesian product Cm × Qt . A pair 〈cm, qt〉 is defined to
be included in R iff qt is the QT that (in reality, which is un-
known) is employed to encode some image taken by a camera
cm . The other way round, 〈cm, qt〉 6∈ R entails that a camera
cm never employs qt to encode an image.

4. IMAGE DATABASE

To create S, we needed to download and process a large num-
ber of images. There are a number of popular photo–sharing
servers allowing a usable interface to access their photos. To
collect a large number of images, Flickr, which is one of
the most popular ones, had been chosen. Using the Flickr
API, we downloaded two millions images denoted as ”orig-
inal”. As aforementioned, the main problem with sources
like Flickr is that their images are from an uncontrolled en-
vironment. It is not guaranteed that the image really comes
from a camera. To minimize the noise rate, we eliminated
those images having non–readable metadata or having incon-
sistency in original and modification dates, inconsistency be-
tween width and height in the metadata and actual image’s
width and height or those having a software tag signifying the
traces of some known photo processing software. Further-
more, we eliminated images without 3–channel colors. All
these operations, reduced the number of ”original” images to
798,924. Our strategy in downloading images was to maxi-
mize |Cm|, |Qt |, |U | in DB using non–modified images.

5. A STATISTICAL APPROACH

In general, the question arises: Given observed information,
represented as S, what can be concluded about reality, repre-
sented as R? Specifically, given S, can we objectively quan-
tify a “confidence” that a given QT may be employed by
a given camera to encode an image? Indeed, we present an
approach based on statistical hypothesis testing that enable to
make a lower estimation of this confidence.

In brief, we utilize a statistical analysis of information
noise inherent in S. Noisy information generally is contained
in any set of tuples from S. Specifically, given a “testing” pair
t0= 〈cm0, qt0〉, our default position is that all the tuples from
S concerning cm0 and qt0 represent noisy information only.
Accordingly, we set out the null hypothesis

H0 : “t0 is not included in R”

and introduce a test statistic, which, in general, is a numeri-
cal summary of S that reduces S to a set of values that can
be used to perform the hypothesis test. Specifically, our test
statistic quantifies the noisy information. Last, we determine

the upper estimation p of observing a value for a test statistic
T that is at least as extreme as the value that has been actually
observed.

The test statistic is defined as the mapping T : Cm ×
Qt −→ N0 that maps each pair 〈cm, qt〉 from the binary
Cartesian product Cm × Qt to the cardinality (a value from
the set of nonnegative integers, denoted N0) of the set of all
and only those users who, in accordance with S, have taken
some image with a camera cm that has encoded it by means
of qt . In symbols:

T (cm, qt) = card{u | 〈cm, qt , u〉 ∈ S} (1)

for any pair 〈cm, qt〉 from Cm ×Qt .
The rationale behind using the above test statistic is based

on the assumption of proportionality of an amount of noisy
information concerning a given camera and an amount of (ob-
served) distinct users who have taken an image with that cam-
era. Speaking in broad terms, we conclude that an amount of
these users is too big to be attributed exclusively to an infor-
mation noise if the amount exceeds a specified significance
level. To determine this significance level, we introduce map-
pings in terms of which we define the exact sampling dis-
tribution of T . It will be seen that, under undermentioned
assumptions, this exact sampling distribution of T is the hy-
pergeometric distribution that is relative to an appropriate set
of cameras.

Observe that H0 implies that any image that, in accor-
dance with its metadata, has been taken with a camera cm0

and encoded by means of qt0 must in fact have been modified
with a software application. Moreover, consider the following
assumption of software manipulations.

Assumption 1. Software manipulations usually do not
change image metadata concerning a camera.

Essentially, this assumption states that any image that, in
accordance with its metadata, has been taken with a camera,
say cm , in fact has been taken with that camera. Conse-
quently, T (cm, qt) is interpreted as the number of all distinct
users from S who have taken an image with a camera cm ,
which, in accordance with S, has encoded the image by
means of qt . Taking into account possible software manipu-
lations, T (cm, qt) is interpreted as the number of all distinct
users from S who have taken an image with a camera cm ,
whereas the image is encoded by means of qt :

• either, in accordance with S, the camera,
• or, out of accord with S, a software application, used

by a user to modify the image,
has employed qt to encode the image. Specifically, provided
that H0 is true, T (cm0, qt0) is interpreted as the number of all
distinct users from S who have taken an image with a camera
cm0, whereas the image is encoded by means of qt0, which,
contrary to S, has not been employed by a camera cm0 but
by a software application, used by a user to modify the image.



Next, C denoting a subset of Cm , we introduce the fol-
lowing mappings:

G : Cm −→ N0 , (2)

N : 2Cm −→ N0 , (3)

n : Qt × 2Cm −→ N0 (4)

defined by the following respective rules:

G(cm) = card{u | 〈cm, qt , u〉 ∈ S} , (5)

N(C) =
∑

cm∈C

G(cm) , (6)

n(qt , C) =
∑

cm∈C

T (cm, qt) . (7)

G(cm) is interpreted as the number of all (observed) distinct
users (i.e., from S) who have taken an image with a camera
cm . Accordingly, N(C) is the summation of these numbers
(of all distinct users from S) for all cameras from the set C.
That is, each user is added in N(C) k-times if he or she has
taken images with k distinct respective cameras from C. Last,
n(qt , C) is the summation of the numbers of all (observed)
distinct users (from S) who have taken an image with a re-
spective camera from the set C, whereas the image is encoded
by means of qt : either, in accordance with S, the camera, or,
out of accord with S, a software application, used by a user
to modify the image, has employed qt to encoded the image.
That is, each user is added in n(qt , C) k-times if he or she
has taken images with k distinct respective cameras from C,
whereas the image is encoded by means of qt .

Specifically, suppose a set C including only cameras that
never employ qt0 to encode an image. Then n(qt0, C) is in-
terpreted as the summation of the numbers of all (observed)
distinct users (from S) who have taken an image with a cam-
era from the set C, whereas the image is encoded by means
of qt0 by a software application, used by a user to modify the
image. Moreover, suppose that the camera cm0 is included
in C. Indeed, in accordance with H0, cm0 is a camera that
never employs qt0 to encode an image.

Note that, for large S, G(cm) is proportional to the num-
ber of all images taken with a given camera cm . In particular,
considering only images taken with cameras from C, the
G(cm0) to N(C) ratio, G(cm0)

N(C) , is interpreted as the probabil-
ity that an image has been taken with a camera cm0 (by a user,
say u1). Similarly, G(cm0) − 1 to N(C) ratio, G(cm0)−1

N(C) ,
could by interpreted as the probability that an image has been
taken with a camera cm0 by a user, say u2, different from the
user u1. However, observe that this interpretation is correct
only if the following assumption is adopted.

Assumption 2. Given any camera cm from C and a set Ucm

of users who have taken an image with a camera cm , the
probability pu that an image has been taken by a user u is
(approximately) equal to 1

G(cm) for any user u from Ucm .

Then, disregarding all images that have been taken by
considered users u1, u2 with respective cameras (identified
as cm0), 1 − G(cm0)−2

N(C) , is interpreted as a probability that
an image has been taken with a camera from C (but distinct
from cm0) by a user, say u′1. To put it another way, knowing
that a given image has not been taken with a camera cm0by
a user u1 or u2, the probability the image has been taken (by
any user) with a camera from C (but distinct from cm0) is
equal to 1− G(cm0)−2

N(C) . In general, continuing the above train

of thoughts, G(cm0)−k
N(C)−` is interpreted as a probability that, dis-

regarding images that have been taken by any of k + ` con-
sidered users with respective cameras from C, an image has
been taken with a camera cm0. 1 − G(cm0)−k

N(C)−` is interpreted
analogously. Now the following proposition is clear upon re-
flection.

Proposition 1 (Sampling distribution of test statistic). Con-
sider a mapping

F : N0 × Cm ×Qt × 2Cm −→ 〈0, 1〉 (8)

that coincides with the hypergeometric (cumulative) distrib-
ution function, whose probability mass function is defined as
follows:

h(x;n, G,N) =

(
G
x

)(
N−G
n−x

)(
N
n

) , (9)

where, by abuse of notation,

n = n(qt , C) , G = G(cm) , N = N(C) .

Then F (x, cm0, qt0, C) is the sampling (discrete cumulative)
distribution of T (cm0, qt0) under H0 if C includes cm0 and
only those cameras that never employe qt0 to encode an im-
age:

C ⊆ {cm | 〈cm, qt0〉 6∈ R} . (10)

Most importantly, note that

p = 1− F
(
T (cm0, qt0), cm0, qt0, C

)
(11)

is the p-value that is interpreted as the probability of obtain-
ing a test statistic at least as extreme as T(mk0,qt0), which is
uniquely determined by S (i.e., the observed data), assuming
that the null hypothesis H0 is true. It presents the probability
of incorrectly rejecting H0.

Finally, we discuss an important subtlety of the condition
(10) imposed on C in the above proposition. In fact, this con-
dition is hard to fulfill as R is unknown. However, the follow-
ing corollary is easily verified:

Corollary 1. Failing to fulfill (10) results in an upper estima-
tion of the p-value.

To see the assertion of the corollary, observe that failing
to fulfill (10) increases n(qt0, C) defined by (7) but, due to



Assumption 1, affects neither G(cm) for any cm from C and
thus nor N(C). It follows from properties of the hypergeo-
metric distribution that its (cumulative) distribution function
is inversely proportional to n for fixed but arbitrary x, G, and
N . Consequently, for cm0, qt0 and fixed but arbitrary x,
F (x, cm0, qt0, C) has a global maximum at C if (10) holds.
Now it is immediate that failing to fulfill (10) overvalues p
(defined as (11)) the probability estimation that the null hy-
pothesis will be rejected incorrectly.

6. EXPERIMENTAL RESULTS

We have carried out an experiment on 1000 randomly selected
JPEG non-modified images taken by 10 cameras (100 images
per camera) to demonstrate the efficiency of the proposed ap-
proach. For every image, we have repeated a statistical test
procedure with the significance level (the probability of mis-
takenly rejecting the null hypothesis) set to 1%. All the cam-
eras from S has been included in the set C, the parameter
of the sampling distribution of test statistic T . Consequently,
in accordance with the corollary, we have obtained a rather
coarse upper estimation of the p-value, the probability of in-
correctly rejecting H0.

Results are shown in Tab. 1. The column denoted by
“orig” refers to non-modified (i.e., original) images. Modified
images have been simulated by re-saving original images so
that randomly selected QTs (randomly for each image) used
by popular softwares like Adobe Photoshop and GIMP (the
column denoted by “misc”) have been employed to encode
them. Respective numbers of non-rejecting H0 are shown.

Table 1. Data in each cell are obtained using 100 JPEG im-
ages.

cm size orig misc
Canon EOS 20D 3504× 2336 0 37
Canon EOS 50D 4752× 3168 0 34
Canon PowerShot A75 2048× 1536 0 28
Konica KD-400Z 2304× 1704 0 16
Nikon Coolpix P80 1280× 960 0 14
Nikon E990 2048× 1536 5 10
Olympus C740UZ 2048× 1536 2 7
Olympus X450 2048× 1536 1 23
Panasonic DMC-LX2 3840× 2160 0 19
Sony DSC-W40 2816× 2112 2 16

7. DISCUSSION

It is apparent that despite QTs cannot uniquely identify the
source effectively, they provide valuable information, supple-
mental in the forgery detection task. This has been shown in
the previous section.

We point out that our results are affected by the C para-
meter in the aforementioned fashion. In particular, a careful

selection of cameras (to be included in C) based on an appro-
priate heuristics, is supposed to improve results remarkably.
Specifically, it is expected to lower the probability of incor-
rectly rejecting H0 concerning QTs of non-modified images,
resulting in lower values in the column referred to as “orig.’

Denoising a DB of QTs of JPEG images from “unguaran-
teed” sources is a complex task. Cameras and softwares often
have complicate and unpredictable behavior. Many cameras
compute QTs on the fly (based on the scene). Furthermore, a
huge number of cameras and softwares employ standard IJG
QTs. There also are devices using a particular set of QTs very
widely and another set of QTs very rarely.

The approach presented is general and can straightfor-
wardly be applies to other features forming devices finger-
prints.
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